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The Priifer phase function method is extended to full complex formalism whereby 
parameters, functions, and integration paths may all be complex-valued. A procedure for 
tracing the relevant integration paths is presented. We use as illustrations, applications to 
scattering theory: calculation of complex optical phase shifts, evaluation of quanta1 deflection 
function, and location of quanta1 rainbows are presented. 80 1989 Academic press, inc. 

1. INTRODUCTION 

The Priifer phase function provides a powerful computational tool for many 
problems in applied mathematics, physics, chemistry, and engineering typically 
arising from phenomena described by waves such as electromagnetic radiation, fluid 
waves, or quantum mechanical wave phenomenon. The most common application 
of the Priifer phase function is the Sturm-Liouville eigenvalue problem: finding the 
eigenvalue 1 1, say, that yields a non-zero solution ‘F(x) of a differential equation 
of the form 

Y”(x) + Q(x; {Ai}) Y(x) = 0, (1) 

where {Lj} denotes parameters of the function Q(x), subject to suitable boundary 
conditions at the endpoints of the relevant interval on the real line. The present 
article deals with several extensions of this basic case, the most fundamental of 
which is the full complex formalism: the parameters, all the functions, and the 
integration paths of Eq. (1) are allowed to be complex. Illustrated by example 
applications, several different types of computational problems are considered such 
as complex quantization, a problem for which the desired quantity is not an eigen- 
parameter but is obtained from the value of the Priifer phase function at a certain 
point or interval in the complex plane and a case in which the desired quantity is 
a function derived from the Priifer phase function by explicit differentiation. While 
the former of these applications only deal with a straightforward integration of a 
differential equation for the appropriate phase function, such as 

Q’(z; {A,}) = -sin2 8(z; {Aj}) - Q(z; (A,}) cos* B(z; (A,}) (2) 
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in the case of the unmodified Priifer phase function, the last case also involves 
additional differential equations for a function obtained by explicit differentiation of 
an equation similar to Eq. (2). 

The complex integration method and applications similar to those considered in 
the present article are likely to appear in many problems in the fields mentioned 
above. However, to illustrate the procedure, specific applications to potential 
scattering are considered. In the following, Section 2 presents the two Priifer phase 
functions considered in this work, their relation and their respective differential 
equations and a general procedure for generating new relevant functions and their 
differential equations. Section 3 then deals with the complex integration and 
provides means of tracing the integration paths in the complex plane. Sections 4, 5, 
and 6 present specific applications: calculations of complex quanta1 scattering phase 
shifts and quanta1 deflection function, and location of quanta1 rainbows and saddles 
directly from the Priifer phase function method or by a complex quantization 
calculation. Numerical results are collected in Section 7 and conclusions are finally 
summed up in Section 8. 

2. THE PRCJFER PHASE FUNCTIONS 

The usual Prtifer phase function method [l-5] for solving Eq. (1) utilizes the 
logarithmic derivative of V(z) in the form of the Priifer substitution 

$(Zj= tan O(z; {S}) 

or the modified Priifer substitution 

Y’(z) 
~=Ql’*(z; {3Li}) tan cp(z; {A,}) 

to transform the second-order differential equation, Eq. (l), to two first-order equa- 
tions, one of which, involving 19(z; {S}) or cp(z; {Aj} ), is independent of the solution 
of the other equation. For the present calculations, however, slightly more general 
functions are more appropriate. Therefore, in order to have a direct relation 
between the asymptotic values of the phase functions B(z; {S}) or cp(z; {S}) and 
the physical quantities considered in later applications, substitutions 

Y”(Z) 
,o=tan(Qz; {Aj])+kz) 

and 

Wz) 
m= Q"*k ii,,}) tan(cp(z; IAj}) +kz), 

(5) 

(6) 
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where k is a constant depending on the problem, were used in the present work 
yielding for e(z; {Jj}) or cp(z; {S}) the first-order differential equations 

e’(z; {lj})= -k-Q(z; {Aj})COS2(8(Z; {Ij})+kz)-sin2(tI(z; {Aj})+kz) (7) 

and 

The choice between Eqs. (7) and (8) is based on computational convenience 
bearing in mind that the relation 

tan(o(z; {ij})+kz)=Q1”(z; {S}) tan(cp(z; {S})+kz) (9) 

can be used to change from one representation to the other provided Q(z; {S}) # 0. 
The computations using Eqs. (7) and (8) are subjected to the following numerical 
restrictions. The q-representation cannot be used in the immediate neighbourhood 
of a zero of Q(z; { 3Lj}), called a turning point. On the other hand, if Q(z; {S}) is 
large (and positive) the p-integration is more stable and numerically the more 
accurate of the two representations while the &equation for such circumstances 
suffers from truncation errors. Therefore, if integration through a turning point is 
required, a typical procedure would be to start the integration with the e-equation, 
integrate past the contributing turning points, and then change to q-representation 
via Eq. (9). 

While in many problems the required quantity may be immediately computed 
from the value of one of the phase functions above, for some other problems the 
desired quantities are functions of various partial derivatives of a phase function 
with respect to the parameters {A,}. A fairly complicated system of this kind 
is presented in [6] but, for simplicity, the present work only considers a case 
involving a simple partial derivative with respect to one of the parameters, &. A 
straightforward differentiation of Eq. (8) immediately yields the differential equation 
for 

(‘(Z; {ij})E(““t~A~““)= -~(aQc~~~j}))Q-l,2(z; (;i,>) 

-( 
1 ‘Q’(z; (Aj})/ali Q’(z; {S}) aQ(Z; {S})/aAj 
4 Qk V,>, - Q2tz; {3LJ-}) > 

x sint2(&; { Aj}) + kz)) 

““’ ““) COS(~(~(Z; {S})+ kz)) 
- ~Q(z; { lj} ) 

((z; {S}) +zg) (10) 
I 

which can be integrated with Eq. (8) along the integration paths described below 
subject to relevant boundary conditions depending on the particular problem. 
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3. INTEGRATION PATHS IN THE COMPLEX PLANE 

For real problems the integration takes place along the real line and the only 
computational difficulties are associated with the turning points as discussed above. 
The codes available by now [7, S] cope with this by employing the unmodified, 
Eq. (2), or the so-called scaled Priifer substitution which essentially amounts to 
imitating Q(z; {Ljzi)) in Eq. (4) by local approximations except near the turning 
points to avoid the difficulties associated with the zeros of Q(z; {S}). For the 
problems considered in this work, it is clearly desirable to use only one representa- 
tion, I% or q-one, because while Eq. (9) is very straightforward to use, similar 
equations for the i-function and similar, even more complicated, functions would 
be prohibitively unwieldy. 

For the complex case, as explained in [9], the role of the real axis as the integra- 
tion path is taken by a path in the complex z-plane consisting of Stokes’ lines and 
anti-Stokes’ lines emerging from the complex turning points contributing to the 
problem. These lines are defined as paths in the complex z-plane on which Qr” dz 
is purely imaginary or purely real, respectively. As a particular case, in the real 
problem, for which dz is dx and Q real negative or positive, the classically forbidden 
regions “outside” the turning points, where Q is negative and thus Qli2 imaginary, 
are Stokes’ lines and the classically allowed regions where Q is positive are anti- 
Stokes’ lines. For a general problem, a straightforward application of the conditions 
above shows that the lines are defined by the differential equations 

4 Re( Q”‘) 
dx= -Im(Q”‘)’ 

dy Im(Q”‘) 
dx= Re(Q”‘)’ 

for a Stokes’ line, 

for an anti-Stokes’ line, 

(11) 

(12) 

where z=x+iy and Q ‘/’ = Re(Q’12) + i Im(Q”‘). For accurate results, the integra- 
tion must approximately follow the path defined by the relevant Stokes’ lines and 
anti-Stokes’ lines of the problem with special attention to the Stokes’ lines. On a 
Stokes’ line, Eq. (1) has exponentially increasing and decreasing solutions and the 
integration obviously soon picks up the exponentially increasing solution. There- 
fore, on a Stokes’ line, the integration is carried out towards the turning point to 
ensure an accurate transition to the oscillatory solution on an anti-Stokes’ line. On 
an anti-Stokes’ line on the other hand, the direction of the integration is not crucial. 
Figures la-d show some typical distributions of turning points and associated 
appropriate paths. Figure la presents the integration path for a straightforward 
one-turning-point calculation of real or complex phase shift with one Stokes’ line 
and one anti-Stokes’ line while Fig. lb shows a real three-turning-point near- 
resonance case in which, for calculation of the phase shift, the Stokes’ line at the 
left must be connected to the anti-Stokes’ line emerging from the rightmost turning 
point. Figure lc depicts a similar complex case in which the integration path essen- 
tially is reduced to the case of Fig. la because the two turning points on the right 
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FIG. 1. Typical turning point distributions, Stokes’ lines (broken), anti-Stokes’ lines (full) and 
appropriate integration paths (arrows) for (a) one-turning-point phase shift calculation; (b) real three- 
turning-points near-resonance phase shift calculation; (c) near-resonance phase shift calculation with 
extra turning points; (d) complex angular momentum resonance situation. 

only affect the numerical efficiency of the calculation, in particular with phase- 
integral methods. Finally, Fig. Id shows complex angular momentum resonance 
situation. In this case, the two relevant turning points correspond to the leftmost 
and rightmost turning points of Fig. lb while the third turning point has moved 
down and is not significant. The integration path and the behaviour of the system 
are very similar to familiar bound states. 

While the complications at the turning points prevent the real codes of using the 
modified Priifer transformation, Eq. (41, the complex formalism of the present work 
does not suffer from this restriction because the path can be transformed to form 
a small circle or a kink to avoid the immediate neighbourhood of the turning point. 
The codes of the present work therefore always use the q-equations in integrations 
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and follow the integration path traced out by pathfinders based on the differential 
equations (11) and (12) which, with the initial input of the location of the relevant 
turning point, routinely yield the curves in terms of arrays of x, y-values using the 
Runge-Kutta-Merson method of the routine D02BBF of the NAG library. The 
turning points are avoided by making a small kink in the complex plane. The 
Q-representation is occasionally used to input appropriate boundary conditions 
with the aid of Eq. (9). 

The exact numerical integration above can be used to obtain results of virtually 
any desired accuracy. However, for most situations, as shown in [S], the best com- 
promise between high accuracy and cost of computation is to use high-order phase 
integral quadrature to integrate the phase function. For the scattering applications 
below, as a rule of thumb, it has been found out that if the number of contributing 
turning points is one, the high-order phase integral method yields the best possible 
compromise between high accuracy and computational efficiency, but if the number 
of relevant turning points is more than one, the increased complexity of the phase 
integral formulae combined with possible computational complications favor the 
direct numerical integration of the phase functions. 

4. THE PREFER PHASE FUNCTION PHASE SHIFT CALCULATION 

The traditional definition of the phase shift 6, follows from the boundary condi- 
tions of the radial Schrodinger equation 

Y;(r)+ 
[ 

1(1+ 1) k2-$ V(r)-7 1 Y(r)=O, 
where I = 0, 1, 2, 3, . . . is the orbital angular momentum number, at r = 0, 

ylY,(o)=o, (14) 

and, at infinity, 

Y,(r)rFm sin (kr-F+d,). 

The definition above, which implies integration along the real line, is strictly valid 
for real phase shifts only. For complex phase shifts, the turning point responsible 
for the phase shift lies in the complex plane off the real axis. Accordingly, as 
explained above, the role of the real axis is taken by a complex path consisting of 
a Stokes’ line and an anti-Stokes’ line emerging from this complex turning point. 

The notation 

Q(z)= k’-$ Y(r)--] (16) 
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brings Eq. (13) in line with Sections 2 and 3 and from Eqs. (6) and (15) it follows 
that, apart from a constant factor rc/2, q(z) corresponds to the argument of the sin- 
function of Eq. (15). Therefore, according to the boundary conditions correspond- 
ing Eqs. (14) and (15) the complex phase shift is obtained by integrating Eq. (8) 
from z small to z large along the complex integration path subject to the boundary 
condition e(z) = --n/2 at the starting point, from the relation 

6, = cp(z + co ) + k/2. (17) 

The failure to follow the appropriate integration path such as integration along 
the real line in the complex case causes loss of accuracy and the appearance of 
unphysical multiples of rc in the real part of the phase shift [lo]. The phase integral 
evaluation of the phase shift in the complex case [ 111 implicitly chooses the correct 
integration path and is applicable with limitations described in [ 12, 131 and above. 

5. THE PRUFER PHASE FUNCTION QUANTUM DEFLECTION FUNCTION 

Classical deflection function which is of great value in interpreting the features of 
the differential cross section is usually related to quanta1 scattering phase shift via 
the semiclassical phase shift expression [14, 151. This method, however, introduces 
unnecessary complications due to the phase integral approximation and has a 
severely restricted range of validity. In particular, it is not applicable for energies 
near the orbiting resonances. The quantum deflection function is defined in terms 
of the partial derivative of the phase shift with respect to the angular momentum I 

and may thus be computed by numerical differentiation of the phase shift function. 
By substituting Q(z) from Eq. (16) and by identifying Ai with I in Eq. (10) the 
Prufer phase function method immediately yields an explicit differential equation 
for 

(19) 

from which the quantum deflection function can be computed directly by integra- 
tion subject to boundary conditions derived from Eqs. (14) and (15) and noting 
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that the solution of Eq. (19) requires a simultaneous integration of Eq. (8) to supply 
the values of the q-function. A further differentiation of Eq. (19) yields yet another 
similar equation for 

(20) 

so that the location of rainbows defined as the value of 1 for which the real deflec- 
tion function has a minimum is reduced to the simple computational task of finding 
the value of 1 for which the function a@(Z)/al has a zero. Similarly, saddles which 
are complex are defined as the complex value of I for which the deflection function 
equals to the complex scattering angle. 

6. COMPLEX ANGULAR MOMENTUM PARAMETRIZATION 

The application of complex angular momentum techniques [16] to the problem 
of locating the rainbows and saddles associates the real and the imaginary parts of 
the value of the complex angular momentum at the pole with the position and the 
width of the deflection function minimum, respectively. Recalling that 

S,(k) = exp 2i6,, (21) 

where S,(k) is the diagonal S-matrix element, and parametrizing 

(22) 

it follows that the deflection function has a minimum at 

l=Rel, (23) 

with a width given by 

r,,= 2 Im I,, (24) 

where 1, is the complex angular momentum pole location which is evaluated by a 
straightforward complex eigenvalue calculation. 

Remler [17], by using the first-order JWKB method, has parametrized the 
S-matrix element S,(k) in the semiclassical tradition by using the variable I+ i. 
However, in a more accurate quanta1 calculation such as the present one, the 
parametrization of Eq. (22) is more natural. This simple parametrization is a useful 
computational device but has a somewhat restricted range of validity. The real part 
can be compared directly with the value from the direct method of Section 5 and 
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the width of the direct method is associated with the value of the deflection function 
at the minimum by 

2 r,*=- @n’“’ (25) 

7. NUMERICAL RESULTS 

The computational methods described above were tested by calculating phase 
shifts and deflection functions for a wide range of 1 and locating deflection function 
minima for an analytic test potential 

(26) 

with B= 2psa2/fi2 = 125. The reduced energy K= A2/B, where A = ka, and 
C = 2~ Wa2/fi2 is the measure of the strength of the imaginary part of the potential 
relative to its real part. 

Tables I and II present results for the real potential C = 0 for a range of the 
reduced energy including the low energy, multiple-turning-points, orbiting 
resonance region. Table I lists values of the phase shifts at K = 0.2 and K=DS for 
a range of the partial wave index 1 in the resonance region and in Table II, loca- 
tions of the rainbows and the values of the deflection function at the rainbow are 
given for a wide range of the reduced energy including those of Table I. The codes 
of the present work have a facility of the phase integral calculation of phase shifts 
which if applicable is computationally the most economical method of computing 
accurate phase shifts [S, 111. However, as discussed in [13], the presence of an 
orbiting resonance may cause numerical difficulties which induce serious errors for 
the phase integral phase shifts for the few values of the partial wave index 1 near 
the resonance. This is very unfortunate because the main purpose of computing 
phase shifts is to evaluate the partial wave sum for cross section calculation and 
even a single inaccurate phase shift can seriously disturb the whole calculation. The 
present method therefore provides a remedy to the difficulties such as reported in 
[13] combining the computationally efficient phase integral quadrature and the 
exact numerical integration of the phase function to one accurate and efficient code. 

The standard procedure for computing the deflection function is by phase 
integral methods and difficulties with multiple turning points have so far prevented 
calculations at the resonance region. Table II lists the positions and widths of the 
rainbows defined as the minima of the deflection function as well as the values of 
the deflection function at those points computed by the methods described above 
for a wide range of energies. From the comparisons of Table II it can be seen that, 
for energies below the top of the centrifugal barrier, K < 0.5, for the present poten- 
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TABLE I 

Two Values of Reduced Energy K below the Top of the 
Barrier, Priifer Phase Function Phase Shifts 6, 

K = 0.2 I< = 0.5 

I 6, 61 

0 -0.48303 -4.26023 

1 0.92826 -2.80291 

2 2.17805 -1.45983 

3 3.26233 -0.23262 

4 4.17460 0.87659 

6 4.90478 1.86407 

6 6.43920 2.72624 

7 6.76776 3.46384 

8 6.82676 4.04146 

9 6.52616 4.47666 

10 4.66646 4.74246 

11 3.78849 4.81381 

12 0.40576 4.65522 

13 0.23496 4.24763 

14 0.15665 3.41267 

15 0.10947 1.02973 

16 0.07680 0.59601 

17 0.06810 0.40756 

18 0.04366 0.29471 

Note. For LJ(12, 6) potential with B= 125. 

tial, calculations with the computationally more efficient complex angular momen- 
tum parametrization are suffkiently accurate but for higher energies the 
parametrization of Eq. (22) becomes less valid and the direct method has to be 
used. 

The complex integration procedure was tested by computing phase shifts for 
C = 125, s = 10 at a wide range of 1 for K = 0.648, K= 2.592, and K= 10.368. While 
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TABLE II 

Positions and Widths of the Rainbows 

0.1 10.9605 

0.2 11.8583 

0.3 12.2413 

0.4 13.6804 

0.5 14.3594 

0.6 15.0814 

0.7 16.7545 

0.8 16.3868 

0.9 16.9848 

1.0 17.6541 

1.2 18.6215 

1.4 19.6137 

1.6 20.6462 

1.8 21.4296 

2.0 22.2721 

2.6 24.3212 

3.0 26.0241 

3.5 27.6891 

0.1387 13.6809 

0.2625 14.3606 

0.3738 15.0842 

0.4959 15.7692 

0.6165 16.392e 

0.7351 16.9910 

0.851? 17.5587 

1.0792 

0.00004 -63000. 

0.0057 -360. 

0.0493 -40.5 

0.1449 -14.424 

0.2741 -7.9210 

0.4184 -5.3608 

0.5686 -4.0332 

0.7200 -3.2439 

0.8700 -2.7206 

1.0174 -2.3483 

-1.8532 

1.3007 -1.6374 

1.5182 -1.3173 

1.7322 -1.1646 

1.9436 -1.0290 

2.4639 -0.8117 

2.9764 -0.6719 

3.4839 -0.5741 

4.0 29.2767 

4.5 30.7622 

3.9878 -0.6016 

4.4892 -0.4466 

6.0 32.1744 4.9887 -0.4092 

Note. For LJ(12,6) potential with B= 125, at the reduced energy 
range K = 0.1-5.0: (a) the Priifer phase function method, (b) complex 
angular momentum method, and (c) the value of the quantum deflec- 
tion function at the rainbow. 
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TABLE III 

Complex Priifer Phase Function Phase Shifts S, 

If = O.MR If = 2.592 If = IO36R 

I IlP6, Im6, Rd, Id, Re6, Id, 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

-5.658026 0.871824 

-4.190118 0.871296 

-2.825671 0.870241 

-1.565859 0.868659 

-0.412507 0.866556 

0.631818 0.863940 

1.663669 0.860831 

2.378613 0.857268 

3.070409 0.853324 

3.631486 0.849126 

4.061055 0.844797 

0.291969 0.002625 

0.037042 0.000053 

0.008906 0.000004 

0.002950 0.000001 

0.001195 0.000000 

0.000557 0 .oooooo 

0.000286 0.000000 

0.000161 0.000000 

0.000097 0.000000 

-15.103387 0.872865 -31.098687 0.962038 

-13.592026 0.872248 -29.561631 0.961647 

-12.140217 0.871008 -28.057974 0.960864 

-10.748196 0.869137 -26.587937 0.959687 

-9.416321 0.866620 -25.151683 0.968112 

-8.145078 0.863435 -23.748993 0.956134 

-6.935068 0.859566 -22.360270 0.953747 

-5.787122 0.854948 -21.045541 0.950943 

-4.702111 0.849568 -19.744953 0.947712 

-3.681163 0.843360 -18.478676 0.944045 

-2.725589 0.836258 -17.246904 0.939928 

2.706651 0.672645 -6.888698 0.869535 

0.641135 0.020307 -0.419007 0.713687 

0.144416 0.001099 1.517671 0.342971 

0.047344 0.000143 0.735440 0.046208 

0.019124 0.000028 0.304559 0.007705 

0.008891 0.000007 0.142053 0.001837 

0.004679 

0.002550 

0.001510 

0.000002 

0.000001 

0.000000 

0.073206 

0.040766 

0.000646 

0.000188 

0.024137 0.000073 

Note. For complex optical LJ( 12, 6) potential with B = C= 125, s = 10, at three values 
of reduced energy K. 

phase shifts for these systems have been reported before [ 10, 181, the accuracy of 
the results of Table III which is needed for these strongly absorptive potentials is 
hardly obtainable by other methods using the real line as the integration path. With 
the present method, due to the correct complex integration path, phase shifts of 
virtually any desired accuracy can be computed routinely for almost any complex 
potential. 
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8. CONCLUSIONS 

A computation procedure for fully complex Prtifer phase function calculations 
has been described and applied to several computationally different problems. 
Apart from the complex Sturm-Liouville eigenvalue problem, applications in which 
the desired quantity is related to the value of the phase function or to another func- 
tion obtained by partial differentiation of the phase function with respect to one of 
the parameters or to a complicated system of such functions have been considered. 
The heart of the method is the analysis of the relevant integration paths which 
enable the integrations to be performed by the computationally efficient phase 
integral quadrature and modified Priifer phase function integration procedures. The 
present illustrations deal with scattering theory but it is clear that many other 
problems in applied mathematics, physics, chemistry, and engineering would have 
a natural formulation as a complex Priifer phase function calculation. 
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